If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21s^2-23s+2=0
a = 21; b = -23; c = +2;
Δ = b2-4ac
Δ = -232-4·21·2
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-19}{2*21}=\frac{4}{42} =2/21 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+19}{2*21}=\frac{42}{42} =1 $
| 48x-16=16(3x-1) | | 3/2n-1/2n=1/4 | | (-n+5)/(-2)=-10 | | 5x+7=16-x | | 5(1+b)-1=29 | | 42q=39324 | | 0=-0.0002x^2+40x | | x+46=40 | | 9=-2(x-7)-9 | | 18w^2+84w+98=0 | | (c+7)/(-12)=-14 | | 2x+10+5=8x+11 | | (0.75x)+(0.25x)=90 | | -5+8w=7w-11 | | -47=4(u-4)-15 | | f^2+37f=0 | | 59+3x+4+6x=180 | | -7=-4v+5v | | (p-1)(2p+5)=0 | | 9y^2-162y-171=0 | | 4/5r=-8 | | -48=7r-3r | | 8+3x=107 | | 7k+37=93 | | -1=3+w/3 | | (x+(1))/8=x-(-13) | | 32=8X2-d | | 50°+2x°=150 | | 0.2x²+3.2-5=0 | | 3(2x+5)=10x+10-4x+5 | | v-10/5=-3 | | y/3-20=-18 |